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Implementation of Discontinuous
Galerkin Methods for the Level Set
Equation on Unstructured Meshes
by Matthew W. Farthing and Christopher E. Kees

PURPOSE: Level set methods are often used to capture interface behavior in two-phase, in-
compressible flow models. While level set techniques for structured computational grids have been
widely investigated, approaches for unstructured meshes are less mature. This report details the
formulation and implementation of a discontinuous Galerkin-based approach that is suitable for
unstructured meshes and offers potential gains in accuracy and efficiency over more traditional
level set techniques.

INTRODUCTION: Flow of air and water around solid objects can be modeled by assuming
the phases are separated by sharp interfaces and that each fluid subdomain is governed by the
Navier-Stokes equations. The resulting model requires resolution of the flow field and the location
and evolution of the interfaces. There are many techniques available for approximating flow in
each subdomain and many ways to resolve the interfaces. Level set methods represent one such
class of techniques for capturing interface behavior that has been applied successfully to problems
in fields from computational geometry to fluid mechanics (Osher and Fedkiw 2001, Sethian 2001).
Among other things, the appeal of level set methods can be attributed to the generality of their
formulation, ability to resolve interfaces accurately while allowing for topological changes, and
relatively straightforward extension to higher dimensional problems (Sethian 1999).

Level set methods for structured grids are fairly mature (Sethian 2001, Osher and Fedkiw 2001).
Although extensions for general interface propagation problems as well as two-phase flow have
been considered (Barth and Sethian 1998, Sethian and Vladimirsky 2000, Nagrath et al. 2005,
Smolianski 2005), approaches for unstructured meshes are less mature. With this in mind, we are
interested in the design and implementation of level set techniques for air/water flow that naturally
apply to unstructured tetrahedral meshes and are well suited to distributed computing architectures.

Standard level set methodology builds upon an accurate discretization for a linear hyperbolic partial
differential equation (PDE) or an equivalent Hamilton-Jacobi formulation (Sethian 2001). It also
relies heavily on an effective reinitialization technique that must be employed at intermediate times
to recover the accuracy of the level set representation of the fluid front (Sussman and Fatemi 1999).

In this report we focus on the implementation of an alternative strategy that employs a Runge-Kutta
discontinuous Galerkin (RKDG) discretization (Cockburn and Shu 2001) and exploits the fluid
incompressibility assumption (Marchandise et al. 2006). With sufficiently high-order approxima-
tions, this method potentially offers accurate solutions with good mass conservation, while obviat-
ing the reinitialization step. It also lends itself to fully explicit time integration and a quadrature-
free implementation that is readily parallelizable (Atkins and Shu 1996, Baggag et al. 1999).

FORMULATION: We begin with a physical domainΩ in which an interfaceΓ(t) evolves over
a time interval[0, T ]. To characterizeΓ(t), we adopt a level set formulation and define implicitly
a functionφ(x, t) such thatφ(x, t) = 0 corresponds toΓ(t). In this case, the propagation ofΓ(t)
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with normal speedun can be expressed as (Osher and Fedkiw 2001, Sethian 2001)

∂φ

∂t
+ un‖∇φ‖ = 0, for x, t ∈ Ω × (0, T ] (1)

with the initial data,φ(x, 0) = φ0(x), chosen so thatφ0(x) = 0 on Γ(0). We further require that
φ0(x) be a signed distance (i.e.,φ0(x) = ±d whered is the distance toΓ), although this is not
strictly necessary (Olsson and Kreiss 2005).

Successful level set approximations require accurate solution of Equation 1 and a suitable velocity,
u, defined throughoutΩ that gives the correct front propagation speed,un, onΓ (Sethian 2001). In
addition, these methods typically require an efficient approach for initializingφ(x, t = tm) at given
time instances,tm, that ensuresφ(x, tm) is sufficiently smooth overΩ but yet maintainsφ(x, tm) =
0 onΓ(tm) (Sussman and Fatemi 1999). As mentioned in the introduction, the emphasis here is on
one configuration of discrete approximations and solution algorithms that attempts to address the
above requirements and may hold promise for simulating multiphase, incompressible fluid flow.

Conservative level set equation formulation: The approaches considered rely
on discontinuous Galerkin (DG) spatial discretizations to obtain accurate numerical solutions for
φ on unstructured meshes. DG approximations forφ can be obtained in at least two ways. Equa-
tion 1 can be solved directly using a general RKDG formulation for Hamilton-Jacobi equations
(Hu and Shu 1999, Li and Shu 2005). Or, we can take advantage of the fact that our area of interest
is incompressible, multiphase flow in order to apply methods for solving conservative, linear ad-
vection problems. We follow Marchandise et al. (2006) and adopt the latter approach here, since it
allows us to use tools we have previously developed for solving PDEs with DG methods (Li et al.
2007).

First, Equation 1 is equivalent to solving

∂φ

∂t
+ u · ∇φ = 0 (2)

for an appropriately definedu. In the case of two-phase flow, we can identifyu with the fluid
velocity so thatu · n = un, wheren = ∇φ/‖∇φ‖ is the unit normal to the interfaceΓ (Chang
et al. 1996). Equation 2 can then be rearranged as

∂φ

∂t
+ ∇ · (uφ) = φ∇ · u (3)

which gives
∂φ

∂t
+ ∇ · (uφ) = 0 (4)

when the fluid is incompressible (i.e.,∇ · u = 0) (Marchandise et al. 2006).

Element weak formulation: Equation 4 is just the linear advection equation in conser-
vative form, and a weak formulation follows in a standard way (Cockburn and Shu 2001). Given a
triangulation,Mh, of Ω and an elementE ∈ Mh, an approximate solution is sought in the space

Vh = {vh ∈ L∞(Ω) : vh|E ∈ Vh(E), ∀E ∈ Mh} (5)
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where we denote the local discrete test and trial space asVh(E). Multiplying Equation 4 by a test
function and integrating by parts over an elementE , we have

∫

E

vh
∂φ

∂t
dx =

∫

E

φu · ∇vh dx −

∫

∂E

vhφu · nE ds, ∀vh ∈ Vh(E) (6)

wherenE is the unit outer normal onE . Inserting a trial solutionφh ∈ Vh(E) gives
∫

E

vh
∂φh

∂t
dx =

∫

E

φhu · ∇vh dx −

∫

∂E

vhφhu · nE ds, ∀vh ∈ Vh(E) (7)

Since the underlying spaces are discontinuous, the flux on internal element boundaries is multiply
defined. We then replace the outer flux in the last term of the right-hand side of Equation 7 with a
numerical, upwinded flux

∫

E

vh
∂φh

∂t
dx =

∫

E

φhu · ∇vh dx −

∫

∂E

vhφ
up
h u · nE ds, ∀vh ∈ Vh(E) (8)

where

φup =

{
φ− u · nE ≥ 0
φ+ otherwise

φ− = lim
ǫ→0−

φ(x + ǫnE , t)

φ+ = lim
ǫ→0+

φ(x + ǫnE , t) (9)

That is,φup is simply the value ofφ taken from the upwind element at an element interface.

DISCRETE APPROXIMATION: Equation 8 represents a semi-discrete system on each
element ofMh with coupling across elements introduced through element boundary fluxes. In the
following, we detail an RKDG discrete approximation for Equation 8 on affine, simplicial meshes,
which is appealing in its simplicity.

Finite element approximation: We assume that there is a consistently defined, affine
mappingF from a reference element,̂E , for all E ∈ Mh, whereÊ is the reference simplex inRd,
d = 1, 2, 3 (see Figure 1). A local basis forE is denoted{Ni} for i = 1, . . . , np, where

Ni = N̂i ◦ F−1

and{N̂i} is a basis forP k(Ê), the space of polynomials on̂E of degreek or lower. np is the
dimension ofP k(Ê). To define the local shape functions,{N̂i}, we consider the standard nodal
Lagrangian polynomials on̂E (see Figure 2 for theP 3(Ê) case). We label the corresponding set of
nodal locations{p̂i} with N̂i(p̂j) = δij, for i, j = 1, . . . , np, In general, we follow the convention
of using a hat (̂) to signify quantities associated with a reference element and write a trial solution
asφh =

∑np

j=1
φjNj . For convenience, we also definef = φu and

fup
E

= φup
h u · nE (10)

as the upwinded, normal flux along the boundary ofE .
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Figure 1. reference element, Ê and mapping F : Ê → E
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Figure 2. Standard Lagrangian nodal locations on reference element Ê for P 3 (triangles)

Quadrature-free approximation: DG methods typically require more degrees of free-
dom than their standardC0 Galerkin counterparts and also require the evaluation of both volume
and surface integrals over each element. These factors may lead to increased operation counts
and storage requirements for DG methods, particularly when numerical quadrature is used to eval-
uate element integrals. On the other hand, a quadrature-free implementation, in which element
and boundary integrals are evaluated analytically, can reduce operation counts and storage require-
ments for a DG discretization of Equation 8 significantly (Atkins and Shu 1996). Although the
standard approach for DG methods is to use numerical integration (Cockburn and Shu 1998), a
quadrature-free implementation for Equation 8 is straightforward. In essence, only two basic mod-
ifications are necessary to accommodate the quadrature-free approach. The first is a projection off

in [Vh(E)]d, and the other is a representation of numerical fluxes on element boundaries (Marchan-
dise et al. 2006).

Before describing this quadrature-free RKDG approach, we introduce some additional notation.
An element boundary is written ase, and the global set of element boundaries inMh is {ei}. That
is, {ei} is the set of vertices inMh in one spatial dimension, the set of edges inMh for two-
dimensional problems, and faces in three dimensions. A tilde ()̃ is used to distinguish quantities
associated with element boundaries.

In the following, we restrict ourselves to conforming meshes and introduce a local trial spaceṼh(e)
on eachRd−1 element boundary,e, contained inMh (Atkins and Shu 1996). For lack of better
notation, we label the basis for̃Vh(e) as{Ñi}, for i = 1, . . . , ñp, and theRd−1 reference simplex
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asê (ê is a point ford = 1). We defineÑi as before

Ñi = ̂̃N i ◦ G−1

whereG is a consistently chosen map from̂e to e and{ ̂̃N i}, i = 1, . . . , ñp is a basis forP k(ê). A
natural fit is to use a Lagrangian basis forP k(ê) with associated nodes̃̂pj ∈ R

d−1.

For every element, we require a mapping from the elemental spaceVh(E) to Ṽh(e) for eache ∈ ∂E .
Accordingly, we introduce the trace mappingT E

l : Vh(E) → Ṽh(el)

T E

l (Nj) =

ñp∑

i=1

T E

l,ijÑi (11)

T E

l,ij = Nj(p̃i), p̃i = G(ˆ̃pi) (12)

In other words, for each boundary face,el, of an elementE , we have a local matrixTE

l ∈ R
ñp×np

that takes members of the element trial/test space to ad−1 dimensional space defined on the
boundary face that is independent of the element’s local coordinate system. Similarly, the transpose
of TE

l can be used to map from̃Vh(el) to Vh(E).

To definefh ∈ [Vh(E)]d, we use either a coordinate-wiseL2 projection
∫

E

fk
hNi dx =

∫

E

φhu
kNi dx, i = 1, . . . , np, k = 1, . . . , d (13)

or simple nodal interpolation

fk,j
h = φjuk(pj), j = 1, . . . , np, k = 1, . . . , d (14)

A unique upwinded numerical fluxfup ∈ Ṽh(e) is also necessary for eache ∈ Mh. We set

fup
e =

ñp∑

j=1

fup,j
e Ñj (15)

with fup,j
e = φup,ju · ne(p̃j). The unit outer normal,ne, is arbitrarily chosen to point from “left”

to “right,” so that it will be± the unit outer normal for the elements neighboringe. The value of
φup

h is defined using the left and right traces

φup,j = φup
h (p̃j) =

{
φ̃L

h(p̃j) u · ne ≥ 0

φ̃R
h (p̃j) otherwise

(16)

The left and right traces are defined simply by mapping the local element degrees of freedom,
φE ∈ R

np, from the neighboring elements (EL andER), to the corresponding degrees of freedom
for Ṽh(e)

φ̃
L

= T
L
l φL

φ̃
R

= T
R
l′ φR (17)
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where φ̃
L/R

∈ R
ñp. The subscriptsl and l′ are local numberings fore for the left and right

neighboring elements, respectively.

Inserting the new notation into Equation 8, we have

np∑

j=1

∂φj

∂t

∫

E

NiNj dx =

∫

E

fh · ∇Ni dx −
d+1∑

l=1

∫

el

Nif
up
E,l ds (18)

for i = 1, . . . , np andfup
E,l = fup

el
nel

· nE . The three spatial integrals in Equation 18 can now
be calculated analytically over each element, and the corresponding semi-discrete system can be
integrated in time using a method of lines approach and a class of Runge-Kutta time discretiza-
tions (Marchandise et al. 2006). Calculation of the spatial integrals for two-dimensional triangular
meshes is detailed in Appendix A.

Time integration: To integrate Equation 18, we use a class of explicit, strong stability pre-
serving (SSP) Runge-Kutta schemes. The SSP property is based on the assumption that, for a
given problem, a forward Euler time discretization is stable under a given norm (and suitable time
step constraint). An SSP method is then one that maintains this stability with possibly different
approximation order and time step constraint (Gottlieb et al. 2001). For our purposes, we can con-
sider linear ordinary differential equation (ODE) systems, since the mass matrix in Equation 18 is
invertible and limiting is not used (Cockburn and Shu 2001, Marchandise et al. 2006). That is, we
have an ODE system

dy

dt
= Ly (19)

An s-stage family of Runge-Kutta methods that are SSP for Equation 19 can be written

y0 = yn

ym = ym−1 + ∆tn+1
Lym−1, for m = 1, . . . , s − 1

ys =
s−2∑

k=0

αs,ky
k + αs,s−1

(
ys−1 + ∆tn+1

Lys−1
)

yn+1 = ys (20)

for suitably chosen coefficientsαs,k, k = 0, . . . , s − 1 (Gottlieb et al. 2001). A DG discretization
of orderp should be stable for Equation 20 with the Courant-Friedrichs-Lewy (CFL) condition

∆t <
h

c(2p + 1)
(21)

whereh is the element size andc ≥ ‖u‖ for all E ∈ Mh (Cockburn and Shu 2001, Marchandise
et al. 2006). For the numerical experiments below, we use thek+1th version of Equation 20 along
with Equation 21 when the spatial approximation is based onP k elements. The corresponding
coefficients can be found in Table 3.1 of Gottlieb et al. (2001).

NUMERICAL EXPERIMENTS: To evaluate our quadrature-free RKDG approach, we
consider several classical test problems for propagating interfaces with a specified velocity (Rider
and Kothe 1995, Sussman and Fatemi 1999, Pilliod and Puckett 2004, Olsson and Kreiss 2005,
Marchandise et al. 2006).
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Test problems: The physical domain for the first test problem (PA) isΩ = [0, 1] × [0, 1],
and the velocity field isu = [2π(y − 1/2), 2π(1/2 − x)]. The exact solution is a cone of radius
r0 = 1/8. A parameterization for the exact solution,φex, is

φex(x, y, t) =

{
(1 + cos(πx̄/r0)) (1 + cos(πȳ/r0)) /4, ‖r̄‖ < r0

0 otherwise
(22)

wherex̄ = x − xc, ȳ = y − yc, and

xc = sin(2πt)/4 + 1/2, yc = cos(2πt)/4 + 1/2

The second problem (PB) is set onΩ = [0, 1] × [0, 1] with a velocity field given by

ux = cos(πt/8) sin(2πy) sin2(πx)

uy = − cos(πt/8) sin(2πx) sin2(πy) (23)

The initial condition is a disk of radius 0.15 centered at(0.5, 0.75), with an initial signed distance
functiond0 = (x − 0.5)2 + (y − 0.75)2 − 0.152. The solution should return to the initial condition
atT = 8.

The final example (PC) is onΩ = [0, 100] × [0, 100] with a velocity field

u = (π(50 − y)/314, π(x− 50)/314)T

The initial condition is Zalesak’s slotted disk with a radius of 15, width of 5, and slot length of 15
(Sussman and Fatemi 1999, Marchandise et al. 2006).

Illustrative results: For each problem, a regular triangulation ofΩ was formed withNx

triangles along thex axis, andNy triangles along they axis. Simulations were performed with
varying orders of approximation fromk = 1, . . . , 4. A target Courant number, Cr, was chosen
close to the maximum allowed for eachk as given by Equation 21. A dual processor Mac G5 (2
GHz) with 2 GB RAM was used for the computations. The methods were implemented inC++
and compiled withgcc version 3.3 and-O optimization.

Table 1 summarizes the computations performed for PA, while Table 2 contains the corresponding
L1 errors, CPU times, and mass errors. The mass error here is simply defined to be the normalized
difference between the mass in the numerical and analytical solutions. In Table 2,Nd is the total
number of degrees of freedom on each mesh. Figure 3 shows the initial condition and solution at
T = 0.5 for aP 2 approximation on a grid with64 × 64 triangles.

Table 3 summarizes the computations performed for PB, and Table 4 contains the correspondingL1

errors, total mass errors, and CPU times. Figure 4 shows the zero contour of the numerical solution
for aP 2 approximation on a64×64 regular grid. The exact solution for PB is identical to the initial
condition. The right plot illustrates the significant deformation that the solution experiences before
returning to the initial state atT = 8. Note the difference in scales for the two plots.

The simulations performed for PC are summarized in Table 5, while Figure 5 illustrates the rel-
ative accuracy for first- through fourth-order approximations on the same128 × 128 grid. The
difference in accuracy is most evident around corners, where the lower order methods are smeared
significantly (Sussman and Fatemi 1999, Marchandise et al. 2006).
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Figure 3. Solution PA.2, T = 0.5

Table 1. Simulation summary PA

Run Problem P k Nx Ny Nd Cr
PA.1 PA 1 128 128 98304 0.3
PA.2 PA 2 64 64 49152 0.18
PA.3 PA 3 32 32 20480 0.128
PA.4 PA 4 16 16 7680 0.1

Table 2. Simulation results PA
Run L1 Error Mass Error CPU [s]
PA.1 1.3097 × 10−4 0.000 3.214 × 102

PA.2 1.1110 × 10−4 0.000 2.048 × 102

PA.3 1.5038 × 10−4 5.600 × 10−6 8.237 × 101

PA.4 3.3699 × 10−4 2.230 × 10−5 2.805 × 101

Table 3. Simulation summary PB

Run Problem P k Nx Ny Cr
PB.1 PB 1 128 128 0.3
PB.2 PB 2 64 64 0.18
PB.3 PB 3 64 64 0.128
PB.4 PB 4 32 32 0.1

DISCUSSION: The numerical results above are preliminary. They indicate that a quadrature-
free RKDG approach can accurately resolve propagating interfaces for simple rotating velocity
fields and more complex two-dimensional flows as in PB (Rider and Kothe 1995). The results
show that higher order approximations are more accurate for the same spatial resolution. In some
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Figure 4. PB.2. φ0 (black), φ (blue) at T = 8 [left]. φ at T = 1.8 [right]

Table 4. Simulation results PB

Run L1 Error Mass Error CPU [s]
PB.1 2.6219 × 10−3 0.000 1.416 × 103

PB.2 1.6250 × 10−3 0.000 8.199 × 102

PB.3 1.0616 × 10−3 0.000 2.566 × 103

PB.4 1.6091 × 10−3 1.000 × 10−6 8.113 × 102

Table 5. Simulation summary PC

Run Problem P k Nx Ny Cr
PC.1 PC 1 128 128 0.3
PC.2 PC 2 128 128 0.18
PC.3 PC 3 128 128 0.128
PC.4 PC 4 128 128 0.1
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Figure 5. PC, T = 628. Zero contour, P 1 (blue), P 2 (red), P 3 (green), and P 4 (black)
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cases, similar accuracy can be achieved for much coarser meshes with higher order approximations
and an overall reduction in computational effort. However, this work does not constitute a rigorous
evaluation of computational efficiency. Moreover, the methods’ performance needs to be evaluated
for problems in which there is nontrivial coupling between the interface location and fluid flow.

ADDITIONAL INFORMATION: This CHETN is a product of the High Fidelity Vessel Ef-
fects Work Unit of the Navigation Systems Research Program being conducted at the U.S. Army
Engineer Research and Development Center, Coastal and Hydraulics Laboratory. Questions about
this technical note can be addressed to Dr. Christopher Kees (Voice: 601-634-3110,
email:christopher.e.kees@erdc.usace.army.mil). For information about the Nav-
igation Systems Research Program, please contact the Navigation Systems Program Manager,
Dr. John Hite (Voice: 601-634-2402, email:John.E.Hite@erdc.usace.army.mil). This
technical note should be cited as follows:

Farthing, M., and C. Kees. 2008. Implementation of discontinuous Galerkin methods
for the level set equation on unstructured meshes. Coastal and Hydraulics Engineering
Technical Note ERDC/CHL CHETN XIII-2. Vicksburg, MS: U.S. Army Engineer
Research and Development Center.

REFERENCES

Atkins, H. L., and C. W. Shu. 1996. Quadrature-free implementation of the discontinuous Galerkin
method for hyperbolic equations.AIAA Journal36:775–782.

Baggag, A., H. Atkins, and D. Keyes. 1999.Parallel implementation of the discontinuous Galerkin
method. Technical Report NASA/CR-1999-209546, ICASE Report No. 99-35.

Barth, T. J., and J. A. Sethian. 1998. Numerical schemes for Hamilton-Jacobi and level set equa-
tions on triangulated domains.Journal of Computational Physics145:1–40.

Chang, Y., B. Hou, T.Y. Merriman, and S. Osher. 1996. A level set formulation of Eulerian interface
capturing methods for incompressible fluid flows.Journal of Computational Physics124:449–
464.

Cockburn, B., and C. W. Shu. 1998. The local discontinuous Galerkin method for time-dependent
convection-diffusion systems.SIAM Journal on Numerical Analysis35(6):2440–2463.

Cockburn, B., and C. W. Shu. 2001. Runge-Kutta discontinuous Galerkin methods for convection-
dominated problems.Journal of Scientific Computing16(3):173–247.

Gottlieb, S., C. W. Shu, and E. Tadmor. 2001. Strong stability-preserving high-order time dis-
cretization methods.SIAM Review43(1):89–112.

Hu, C., and C.-W. Shu. 1999. A discontinuous Galerkin finite element method for Hamilton-Jacobi
equations.SIAM Journal on Scientific Computing21(2):666–690.

Li, F., and C.-W. Shu. 2005. Reinterpretation and simplified implementation of a discontinuous
Galerkin method for Hamilton-Jacobi equations.Applied Mathematics Letters18:1204–1209.

10



ERDC/CHL CHETN-XIII-2
January 2008

Li, H., M. W. Farthing, C. N. Dawson, and C. T. Miller. 2007. Local discontinuous Galerkin
approximations to Richards’ equation.Advances in Water Resources30:555–575.

Marchandise, E., J. F. Remacle, and N. Chevaugeon. 2006. A quadrature-free discontinuous
Galerkin method for the level set equation.Journal of Computational Physics212:338–357.

Nagrath, S., K. E. Jansen, and R. T. Lahey. 2005. Computation of incompressible bubble dynamics
with a stabilized finite element level set method.Computer Methods in Applied Mechanics and
Engineering194:4565–4587.

Olsson, E., and G. Kreiss. 2005. A conservative level set method for two phase flow.Journal of
Computational Physics210:225–246.

Osher, S., and R. P. Fedkiw. 2001. Level set methods: An overview and some recent results.
Journal of Computational Physics169:463–502.

Pilliod, J., and E. Puckett. 2004. Second-order accurate volume-of-fluid algorithms for tracking
material interfaces.Journal of Computational Physics199(2):465–502.

Rider, W., and D. Kothe. 1995. Stretching and tearing interface tracking methods. In12th AIAA
Computational Fluid Dynamics Conference, 2:806–816. San Diego, CA.

Sethian, J. A. 1999.Level set methods and fast marching methods: Evolving interfaces in computa-
tional geometry, fluid mechanics, computer vision, and materials science. New York: Cambridge
University Press.

Sethian, J. A. 2001. Evolution, implementation, and application of level set and fast marching
methods for advancing fronts.Journal of Computational Physics169:503–555.

Sethian, J. A., and A. Vladimirsky. 2000. Fast methods for the Eikonal and related Hamilton-
Jacobi equations on unstructured meshes.Proceedings of the National Academy of Science
97(11):5699–5703.

Smolianski, A. 2005. A finite element/level-set/operator splitting (FELSOS) approach for comput-
ing two-fluid unsteady flows with free moving interfaces.International Journal for Numerical
Methods in Fluids48:231–269.

Sussman, M., and E. Fatemi. 1999. An efficient, interface-preserving level set redistancing algo-
rithm and its application to interfacial incompressible fluid flow.SIAM Journal on Scientific
Computing20(4):1165–1191.

NOTE: The contents of this technical note are not to be used for advertising, publication, or promotional purposes.
Citation of trade names does not constitute an official endorsement or approval of the use of such products.

11



ERDC/CHL CHETN-XIII-2
January 2008

APPENDIX A. ELEMENT INTEGRAL CALCULATIONS: To illustrate the cal-
culations necessary to evaluate Equation 18 analytically, we consider a two-dimensional example.
The element matrix on the left-hand side of Equation 18 is the standard mass matrix

Mij =

∫

E

NiNj dx =

∫

Ê

N̂iN̂j | detJ | dx̂dŷ = | detJ |M̂ij (24)

whereJ is the Jacobian ofF. The value ofJ is constant on each element, sinceF is affine, and
M̂ = (M̂ij) ∈ R

np×np is only a function of the reference element and the local shape functions
chosen.

The first integral on the right-hand side of Equation 18 is also straightforward to calculate. Recall-
ing that∇Ni = J

−t∇̂N̂i and settingfh = [fx
h f y

h ]t, we have

∫

E

f · ∇Ni dx = | detJ |

np∑

j=1

gx̂,jDx̂
ij + | detJ |

np∑

j=1

gŷ,jDŷ
ij (25)

gx̂,j = fx,jJ−1

11 + f y,jJ−1

12 (26)

gŷ,j = fx,jJ−1

21 + f y,jJ−1

22 (27)

Dx̂
ij =

∫

Ê

∂N̂i

∂x̂
N̂j dx̂dŷ (28)

Dŷ
ij =

∫

Ê

∂N̂i

∂ŷ
N̂j dx̂dŷ (29)

Using the local trace mapping (transposed) to write

Ni =

ñp∑

j=1

T E

l,jiÑj (30)

the boundary integral in Equation 18 can be written in terms of the element boundary flux degrees
of freedom,{fup,j

e } for j = 1, . . . , ñp and local element matrices

∫

el

Nif
up
E,l ds = aE

l |el|

ñp∑

j=1

BE

l,ijf
up,j
el

(31)

BE

l,ij =

np∑

k=1

M̂l,ikT
E

l,jk (32)

M̂l,ij =

∫

êl

N̂iN̂j dŝ (33)

Here,aE

l = nE · nel
accounts for the current element’s outer normal orientation relative to the

unique global orientation assigned to the boundary face.

12



ERDC/CHL CHETN-XIII-2
January 2008

For eachE ∈ Mh, we can define element degree of freedom vectorsφE , gx̂
E
, andg

ŷ
E

in R
np and

for each element boundary,el, a vector of numerical flux degrees of freedom,f
up
l ∈ R

ñp. We then
have the local elemental equation

M̂
∂φE

∂t
= D

x̂gx̂
E

+ D
ŷg

ŷ
E
− aE

l

d+1∑

l=1

|el|

| detJ |
B

E

l f
up
l (34)

APPENDIX B. P 2 LOCAL MATRICES FOR TRIANGLES: Finally, we repro-
duce the local element matrices for a triangular mesh with aP 2 local approximation space. The
barycentric coordinates on̂E are

λ0 = 1 − x̂ − ŷ

λ1 = x̂

λ2 = ŷ (35)

TheP 2 shape functions are then

N̂0 = λ0(2λ0 − 1)

N̂1 = λ1(2λ1 − 1)

N̂2 = λ2(2λ2 − 1)

N̂3 = 4λ0λ1

N̂4 = 4λ1λ2

N̂5 = 4λ0λ2 (36)

The nodal locations associated with{N̂i}, i = 0, . . . , 5 are illustrated in Figure 6. Note that, in the
matrix definitions below, the edges are numbered counterclockwise aroundÊ starting with thex̂
axis.

e e

e

e

ee

1 2

3

4

56

@
@

@
@

@
@

Figure 6. Standard Lagrangian nodal locations on reference triangle Ê for P 2
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M̂ =





1

60
− 1

360
− 1

360
0 − 1

90
0

− 1

360

1

60
− 1

360
0 0 − 1

90

− 1

360
− 1

360

1

60
− 1

90
0 0

0 0 − 1

90

4

45

2

45

2

45

− 1

90
0 0 2

45

4

45

2

45

0 − 1

90
0 2

45

2

45

4

45




(37)

D
x̂ =





− 1

15

1

30

1

30
− 1

10

1

30
− 1

10

− 1

30

1

15
− 1

30

1

10

1

10
− 1

30

0 0 0 0 0 0
1

10
− 1

10
0 0 − 2

15

2

15

− 1

30
− 1

30

1

15

2

15

4

15

4

15
1

30

1

30
− 1

15
− 2

15
− 4

15
− 4

15




(38)

D
ŷ =





− 1

15

1

30

1

30
− 1

10

1

30
− 1

10

0 0 0 0 0 0
− 1

30
− 1

30

1

15
− 1

30

1

10

1

10
1

30
− 1

15

1

30
− 4

15
− 4

15
− 2

15

− 1

30

1

15
− 1

30

4

15

4

15

2

15
1

10
0 − 1

10

2

15
− 2

15
0




(39)

M̂0 =





2

15
− 1

30
0 1

15
0 0

− 1

30

2

15
0 1

15
0 0

0 0 0 0 0 0
1

15

1

15
0 8

15
0 0

0 0 0 0 0 0
0 0 0 0 0 0




(40)

M̂1 =





0 0 0 0 0 0
0 2

15
− 1

30
0 1

15
0

0 − 1

30

2

15
0 1

15
0

0 0 0 0 0 0
0 1

15

1

15
0 8

15
0

0 0 0 0 0 0




(41)

M̂2 =





2

15
0 − 1

30
0 0 1

15

0 0 0 0 0 0
− 1

30
0 2

15
0 0 1

15

0 0 0 0 0 0
0 0 0 0 0 0
1

15
0 1

15
0 0 8

15




(42)
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